If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+18y-10=0
a = 2; b = 18; c = -10;
Δ = b2-4ac
Δ = 182-4·2·(-10)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{101}}{2*2}=\frac{-18-2\sqrt{101}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{101}}{2*2}=\frac{-18+2\sqrt{101}}{4} $
| -10=b+(-9) | | 22n−11=12n−8 | | 6-d=4 | | -4-4v=-6v | | x-177=9 | | 2x+5)/(x+4)=1 | | 8(5-x)=32-8x | | 15=f+4 | | 4x+13=(-23) | | 3|q-2|=18 | | -6x+2x-2=-3(3-x) | | 2m-9=10+5m+8 | | 40+8x=64 | | -45=p-23 | | 7x+3=-2x1 | | 12+c/4=24 | | X+30+(x+10)+(2x)=360 | | c/3+4=8 | | 10x=8x-10 | | 9/10=m/20 | | 2=5m-8 | | 2x+19=6x+39 | | (6z-3)°=(5z+5)° | | 12+c÷4=24 | | 3z-9=-10+4z | | 0.06(6t-4)=0.36(t+4)-1.68 | | 2x+4(x+3)-2=22 | | 3=y3 | | 4(2x-41)=2x+36 | | 8+x/5=-32 | | 3(x-1)=90 | | 1-4=2(-2+x) |